The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways

نویسندگان

  • Nami Minato
  • Misako Himeno
  • Ayaka Hoshi
  • Kensaku Maejima
  • Ken Komatsu
  • Yumiko Takebayashi
  • Hiroyuki Kasahara
  • Akira Yusa
  • Yasuyuki Yamaji
  • Kenro Oshima
  • Yuji Kamiya
  • Shigetou Namba
چکیده

Despite plants infected by pathogens are often unable to produce offspring, it remains unclear how sterility is induced in host plants. In this study, we demonstrate that TENGU, a phytoplasmal virulence peptide known as a dwarfism inducer, acts as an inducer of sterility. Transgenic expression of TENGU induced both male and female sterility in Arabidopsis thaliana flowers similar to those observed in double knockout mutants of auxin response factor 6 (ARF6) and ARF8, which are known to regulate floral development in a jasmonic acid (JA)-dependent manner. Transcripts of ARF6 and ARF8 were significantly decreased in both tengu-transgenic and phytoplasma-infected plants. Furthermore, JA and auxin levels were actually decreased in tengu-transgenic buds, suggesting that TENGU reduces the endogenous levels of phytohormones by repressing ARF6 and ARF8, resulting in impaired flower maturation. TENGU is the first virulence factor with the effects on plant reproduction by perturbation of phytohormone signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium.

One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symp...

متن کامل

The effect of salicylic acid and jasmonic acid on the symptoms of the disease and the expression of defense genes on a greenhouse cucumber infected with CMV

Cucumber is one of the most important vegetable and summer crops economically and is the fourth most cultivated plant in the world after tomatoes and potatoes. In this study, the effect of plant inducers including salicylic acid and jasmonic acid on the viral disease of greenhouse cucumber with Cucumber mosaic virus (CMV) and also the expression of defense genes was investigated. Treatments inc...

متن کامل

Effect of Jasmonic Acid on Physiological and Phytochemical Attributes and Antioxidant Enzymes Activity in Safflower (Carthamus tinctorius L.) under Water Deficient

Background: Safflower (Carthamus tinctorius L.), is an important medicinal plant of Asteraceae family, which is a rich source of pharmaceutically active compounds including phenols, flavonoids and fatty acids. In traditional medicine this plant has been used as an herbal medicine to treat various diseases. Objective: The aim of this study was to evaluate the role of jasmonic acid to protect saf...

متن کامل

The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU.

Phytoplasmas are insect-borne plant pathogenic bacteria that alter host morphology. TENGU, a small peptide of 38 residues, is a virulence factor secreted by phytoplasmas that induces dwarfism and witches' broom in the host plant. In this study, we demonstrate that plants process TENGU in order to generate small functional peptides. First, virus vector-mediated transient expression demonstrated ...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014